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Incoherent turbulent motion modulated by coherent large-scale motion contributes 
to second-order coherent stresses. The spatial distribution of wave-induced stress 
was measured in a jet whose cross-section had been distorted through controlled 
resonant interactions between two forced, helical waves spinning in opposite 
directions. The transfer of energy from the coherent motion to broadband turbulence 
is documented. Shape assumptions are examined by comparing radial distributions 
to predictions from linear, inviscid stability theory. Control over small-scale mixing 
is examined by demodulating the coherent envelope of small-scale turbulence and by 
correlating it with features of the coherent, large-scale motion. Coherent production 
is shown to be associated with the roll-up process and there is evidence of secondary, 
inflexional instabilities. 

1. Introduction 
The controlled distortion of the cross-section of a jet issuing from a circular nozzle 

was discussed by Long & Petersen (1992, hereinafter referred to as I). The emphasis 
was on resonant interactions between forced, spinning waves and on the energy 
exchange to the mean flow. All of those interactions concerned the large-scale 
turbulence which contains most of the energy. 

Here, in Part 2, the influence of forcing on the broadband turbulence will be 
emphasized. In particular the ability of the largest scales to organize the smallest 
scales will be examined. This has direct implications for active control of molecular 
mixing. 

There have been several studies that have demonstrated some degree of control 
over mixing. Schadow et al. (1984) observed improved combustion efficiency using 
elliptic nozzles of varying aspect ratio. Gutmark et al. (1987) demonstrated that 
square and triangular nozzle shapes also promote enhanced combustion. Moreover, 
they demonstrated that the combustion was phase locked to the large turbulence 
scales. Even though the small-scale mixing was incommensurate in frequency with 
the large-scale motion of the flow it was modulated by the large scales. Mixing can 
be suppressed as well as enhanced. Roberts (1984) demonstrated that the production 
of reaction products was suppressed following nonlinear saturation of an excited 
instability in a plane mixing layer. 

Understanding how broadband turbulence is organized by the large-scale motion 
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is essential for turbulence modelling. Many models for turbulent shear flows are 
based on deterministic analogies to solutions of linearized stability equations. In 
making comparisons with phase-averaged quantities that are first order in amplitude 
there is some formal validity to these analogies in that the Rayleigh equation can be 
derived directly from the linearized, phase-averaged equations of motion (Petersen 
& Samet 1988). 

However, second-order quantities contain contributions from incoherent com- 
ponents of the flow. Consequently a closure scheme is required in order to model 
those quantities. In a statistical model, Tam & Chen (1979) used eigenmodes 
calculated from linear stability theory as a set of basis functions. Energy integral 
methods (reviewed by Liu 1981) use stability eigenfunctions as ‘ shape assumptions ’ 
to model cross-stream distributions of turbulence quantities. 

The present study is concerned with the interaction between two spinning waves 
that were forced acoustically from an array of speakers. The degree to which the 
inccherent broadband turbulence was organized by the forcing was determined. The 
relative importance of coherent and incoherent processes to the exchange of energy 
waa examined. The region of the flow where the time-averaged Reynolds stress can 
be correctly modelled by coherent terms was determined. Small-scale turbulence was 
demodulated from the organized, large-scale motion and some mechanisms for the 
control over mixing were explored. 

2. Wave-induced stresses 

time-averaged component, and a phase-incoherent component : 
Following Hussain & Reynolds (1970) the velocity field can be decomposed into a 

u,(x, t )  = Ui(X) +.l i i (X,  t )  + u;(x, t ) .  (2.1) 

The time-averaged U, = a,, the phase-coherent component G ,  = (uJ - U,, and the 
phase-incoherent component u; = ui - (ui). Each component independently satisfies 
continuity. Also the time averages of 6, and u; are both zero. The experimental 
technique for measuring phase-averaged quantities such as (ut) is described in I. 

The phase-averaged covariance is 

( (u, - U,) (u, - U,))  = 4, &$ + (u; u;). (2.2) 

The time average of (2.2) is equal to the Reynolds stress. 
Second-order interactions between coherent disturbances are responsible for the 

term G, 6,. The superposition of two helical waves spinning in opposite directions 
results in a standing wave pattern: 

& - .l$‘(x, r )  ei(as+m$-2nt17’) +I x, r )  ei(a%-m$-2fitl5!”) + C.C. 
f -  A( 
= 21Ft(x,r)l cos(mq5) cos(ax-2nt/T+g), (2.3 1 

where 141 and $ are the modulus and phase of the radial eigenfunction &(x, r ) .  The 
product ti, tij is 

4 6, = 141 141 + I41 141 cos Wq5) 
+ lFil 141 [1+ cos (2mq5)l cos [2(~~~-22xt/T+ $)I. (2.4) 

The time average of (2.4) is the wave stress. The wave stress contributes to the 
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development of the mean flow through the Reynolds-averaged momentum equation. 
The first term on the right-hand side of the equation is uniform in 9. It contributes 
to the mean spreading of the mixing layer. The second term is periodic in #. It 
contributes to the distortion of thc jet cross-section as described in I .  The third term 
is periodic in time and so it vanishes when time averaged. 

The incoherent motion organized by the forcing is included in the term <u;u;), 
which in general can be decomposed into the superposition of a steady term uniform 
in q5, a steady term periodic in 4, plus a term periodic in time with zero mean: 

In the absence of forcing the second and third terms on the right-hand side of (2 .5)  
should vanish because of spatial and temporal homogeneity. In the presence of 
forcing their existence is largely the result of phase and amplitude jitter of the large 
scales as well as modulation of small-scale turbulence. 

The term [u ;U; l2 (x , r ,9 )  is a wave-induced stress that contributes, along with 
IFiIIl$1cos(2mq5) from (2.4), to the distortion of the jet cross-section. The term 
Pi,(x,r,q5,t) is defined to have zero time average. It is important to the transfer of 
energy from the coherent, large-scale motion to the incoherent turbulence. 
Statistically the transfer is represented in the energy budget by the term ?ijaGJax, 
(Reynolds & Hussain 1972, equation 3.2). 

The various deterministic techniques for modelling wave stresses and wave- 
induced stresses all involve some kind of an ad hoc closure scheme for modelling ?i,. 

Models based on nonlinear stability theory derive amplitude equations by retaining 
higher-order terms in a perturbation expansion (e.g. Wygnanski, Marasli & 
Champagne 1987). These models are based on a quasi-laminar closure scheme in 
which the ti, are set to zero. The energy integral approach is an alternative to the 
weakly nonlinear formalism (e.g. Liu 1981). Energy integral theories are generally 
based on closure schemes in which the P ,  are expressed in terms of the wave strain 
rate. Shape assumptions, which are usually based on solutions to stability equations, 
are required in order to model cross-stream distributions. 

The important components of 4, are off-diagonal and cannot be measured with 
single-wire probes. The drain of energy to the background turbulence caused by 
Pi, at2i/i3x, can be assessed by comparing the relative magnitudes of wave stresses and 
wave-induced stresses. We will identify regions of the flow where the coherent 
component is dominant and we will determine the quantitative validity of the shape 
assumption in those regions. 

The Reynolds-averaged stress tensor T ~ ,  is defined as 

(2.6) 
-- 

Ti,  = p[Gt Gj + u; .;I. 

It leads to the streamwise development of the mean flow through the Reynolds- 
averaged momentum equation. In cylindrical coordinates the streamwise component 
of the Reynolds-averaged momentum equation can be written 

The only component of the Reynolds stress (2.6) that can be measured directly with 
the array of single-wire probes is T~.. 

The streamwise evolution of T,, is compared to the evolution of the jet mean cross- 
3 FLM 236 
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FIQURE 1. Evolution of jet cross-sections from a circular to a square shape. Streamwise locations 
equally spaced at half-diameter intervals starting with x /D = 0.5. Forcing at 206 Hz with spinning 
mode number combination m = +2,  -2. (a )  Mean velocity contour level: 0.5U,. (b )  Turbulence 
contour level: (iL+u’),,, = 0.12U,. 

section in figure 1. The measurement locations were equally spaced 0.5 diameters 
apart in the streamwise direction beginning a t  x /D  = 0.5. The jet was forced 
simultaneously with spinning mode numbers of m = + 2 and m = - 2, which 
produced a square, cos (44), cross-section. The turbulence-level contour was selected 
arbitrarily at 0.12; that  rather high level emphasizes the region of the flow between 
x/D = 0.5 and 2.5 where the turbulence was most intense. That region coincided with 
the evolution of the jet cross-section from a circular to a square shape. At x/D = 0.5 
the maximum turbulence levels occurred at the polar locations that would evolve 
into the corners of the square. At x / D  = 1.0 and beyond, the local maxima shifted 
to polar locations that were evolving into the sides of the square cross-section. 
Beyond x /D = 2.5 the jet retained its square shape and the turbulence levels fell 
below the contour threshold. When the jet was forced with spinning mode numbers 
of m = + 1 and m = - 1 the cross-section evolved into an elliptic, cos (24), shape. 
Initially, the turbulence levels were largest along the axis that  evolved into the major 
axis of the ellipse. Farther downstream as the elliptical cross-section evolved they 
were largest along the minor axis. 

is compared to the combined stress Zi2+2i12 in figure 2. Cross- 
sections 2, 3, and 4 from figure 1 ( b )  are shown. The jet cross-section evolved from a 
circle to a square over this range. The edges of the mixing layer (U = 0.3Uj,0.9U,) are 
shown as dotted contours for reference. The stresses were modulated in polar angle 
and the highest levels occurred a t  the sides of the square. The polar angle of the peak 
level is indicated in each case. The peak r.m.s. turbulence levels in the three cross- 
sections were 0.17, 0.18, and 0.16 respectively. At x / D  = 0.5 (not shown) the peak 
r.m.9. turbulence level was 0.26 and the coherent component accounted for 95% of 
that value. As the cross-section distortion developed, the coherent fraction of the 
stress diminished and by x / D  = 2.0 i t  accounted for only 52% of the peak r.m.s. 
value. I n  terms of mean-square fractions, appropriate for stress ratios, these figures 
are 90 % and 26 YO, respectively. 

_ _  
The wave stress 
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FIGURE 2. Spatial development of wave stress 2 (a+) and total stress 4*+da (d-f). Contour 
interval : 0.0036q. Forcing with spinning mode numbers m = + 2, -2. Measurement location x/D : 
(a ,d )  1.0; ( b , e )  1.5; (c,f) 2.0. 

The shape assumption is examined in figures 3 and 4. Radial profiles of wave- 
induced Reynolds stresses are compared to coherent wave stresses and to 
eigenfunctions calculated from the Rayleigh stability equations. Fourier decompo- 
sition was used to extract the Reynolds stress component that was modulated 
according to cos(2m4). The radial profile shown in figures 3 and 4 is the Fourier 
coefficient cZm(r) : 

cZrn = (atrn + b;,); (2.8) 

and (2.9) 

3-2 
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FIQURE 3. Radial profiles of wave stress and wave-induced stress. Forcing with spinning mode 
numbers m = + 1, - 1. b, cz/Ui, equation (2.8); b, ZZ/Lj;3; -, stability eigenfunction, F,,F:,. 
x/D: (a) 0.5, ( b )  1.0, (c) 2.0, (d )  4.0. 

Note that the coefficient c,, includes the term [PI1 in (2.5). The remaining Fourier 
coefficients include the decomposition of the residual #-dependence of the [ P I z  
term in (2.5). 

The wave stress 2 was decomposed in the same manner. Based on the model 
equation (2.4) the cAzm term calculated from 2 should equal the square of the modulus 
of the radial eigenfunction. In figures 3 and 4 radial profiles of E,, are compared to 
cZm profiles and to F,,F:, profiles calculated from inviscid stability theory. The 
Rayleigh eigenfunction Fml calculations were based on measured, mean velocity 
profiles. They were scaled so that the areas under the profiles matched those of the 
corresponding wave stress profiles. Computational details are described in Petersen 
& Samet (1988). 

At s / D  = 0.5 (figures 3a, 4a)  the measured profiles were nearly identical. The polar 
modulation of T,, was dominated by the wave stress component and the shape 
assumption, based on the eigenfunction Fll FT,, was reasonably accurate. This is a 
significant finding because T,, was largest a t  this point and presumably the momentum 
transfer to the mean was strongest. By x / D  = 1.0 (figures 3b,  4b) the profile based 
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FIGURE 4. Radial profiles of wave stress and wave-induced stress. Forcing with spinning mode 
numbers m = + 2 ,  -2. 0, c,/Uf, equation (2.8); +, S,/u;"; -, stability eigenfunction, F,,F&. 
x / D :  (a) 0.5, ( b )  1.0, (c) 2.0, (d) 4.0. 

on T,, was somewhat different from the profile based on wave stress and the shape 
assumption based on stability eigenfunctions was not very satisfactory. 

Streamwise trends are presented in figure 5. Figure 5 (a) represents the fraction of 
T,, modulated according to cos (2m9). The stresses were Fourier decomposed and 
integrated over the jet cross-section. The area integral of coefficient cam was divided 
by the area integral of T,,. At x/D = 0.5, 70 YO to 80 YO of the stress was modulated 
according to cos(2m9). Beyond x/D = 1.0 the fraction fell to around 20% and 
remained at about that level. 

Figure 5 ( b )  represents the fraction of the modulated stress consisting of wave 
stress. The remainder represents incoherent background turbulence modulated by 
the forced wave interaction. The fraction was computed by dividing the area integral 
of Earn by the area integral of cam. The fraction was largest within the first diameter 
downstream from the nozzle exit. This distance roughly corresponds to one 
wavelength of the forced disturbance. Fractions above 100% are not unphysical. 
This behaviour implies that background turbulence modulated according to cos (2m9) 
was displaced in 9 from the wave stresses and so there was some cancellation. Beyond 
x/D = 1 .O the fraction decreased monotonically with streamwise distance. 

Based on figure 5 the fraction of turbulence that was modulated accordmg to cos (2m4) 
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FIQURE 5. Streamwise distribution of (a) the fraction of stress T,, modulated by cos (2mq5) and (b) 
the fraction of the modulated stress contained in the coherent, wave stress component. Spinning 
mode number combination : D, ’ = + 1, - 1 ; 0,  m = + 2, - 2. 

Streamwise position, x / D  

remained nearly constant beyond x / D  = 1 .O. However, there was a continuous drain 
of energy away from the coherent motion to the organized, background turbulence. 
This trend may be the cumulative effect of phase and amplitude jitter. 

3. Small-scale turbulence 
In this section the control over molecular mixing is considered. Incoherent, small- 

scale turbulence is modulated to some extent by the forced, large-scale motion. The 
approach here is to demodulate the phase-coherent envelope and to correlate it with 
features of the large-scale coherent structures. 

The signal processing technique illustrated in figure 6 was used to demodulate the 
envelope ( u ‘ ~ ) ~ ~  of small-scale turbulence from the broadband background. The 
velocity signal was prefiltered using a high-pass, digital filter. The filtered signal was 
squared and then phase averaged. When the velocity signal was prefiltered at the 
frequency of forcing (figure 6a) the standard deviation a’(t) = ( ~ ” ( t ) ) ;  contained 
contributions from jitter in the large scales as well as contributions from the small 
scales. The peak value of a’(t) was only slightly higher than the uniform background 
level and was less than the peak value of the phase-averaged velocity d(t) .  When the 
prefiltering frequency was 3 octaves higher than the frequency of forcing (figure 6 b )  
then the standard deviation a’(t) defined the envelope of small-scale fluctuations 
that were modulated by the large scales. The particular value of the prefiltering 
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FIUURE 6. Signal processing technique used to demodulate the envelope (u“), of small-scale 
turbulence fro? the broadband spectrum. -, Prefiltered G ( t )  ; ..... prefiltered standard deviation 
d ( t )  = ( d 2 ( t ) ) S .  Forcing frequency was 206 Hz. Low frequency cutoff: (a)  206 Hz; ( b )  1648 Hz. 

frequency was arbitrary ; the only requirement was that it be above the frequency of 
the integral scale throughout the measurement region. The peak value of c‘ was now 
considerably higher than both the uniform background level and the prefiltered G ( t ) .  
Figures 6 ( a )  and 6 ( b )  were each normalized by their respective maxima. The 
envelope of figure 6 (a )  was dominated by large-scale, energy-containing turbulence. 
Because the signal shown in figure 6 ( b )  was prefiltered well above the frequency of 
the integral scale the levels were quite low. The random oscillations in G(t)  apparent 
in figure 6 (b )  are not visible in figure 6 ( a )  because of scaling and are at  the level of 
statistical uncertainty. 

Spatial distributions of the envelope of small-scale turbulence (u’~)),, are shown in 
figure 7. Because the prefiltering frequency was selected arbitrarily the magnitude of 
( u ’ ~ ) , ~  is not emphasized here. Instead we emphasize the spatial and temporal 
distribution. Cuts through the jet cross-section and along a diameter show that 
turbulent mixing was organized both in space and in time by the forced disturbances. 
The jet was forced with spinning mode numbers of m = + 2 and -2, and at a slightly 
higher level than used with figures 1-5. Cross-sections at z / D  = 2 show the square, 
cos(4+), shape of the mean velocity contours (figure 7 a )  and show small-scale 
turbulence concentrated at the corners of the square (figure 7 b ) .  Figure 7 ( c )  shows 
a cut through the diameter indicated in figure 7 ( b ) .  The concentration of small-scale 
turbulence was periodic at the frequency of forcing. Figure 7 ( d )  is reprinted from 
Gutmark et al. (1987). It shows combustion products (OH radicals from propane/air 
using laser-induced fluorescence) in the cross-section of a jet issuing from a square 
nozzle. The mixing and combustion were enhanced as a result of the interaction 
between axisymmetric excitation and the square nozzle shape. The reaction zones 
were localized in space and exhibit a striking resemblance to the present contours of 
small-scale turbulence (figure 7 b) .  
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FIQURE 7. Spatial and temporal distributions of small-scale ( u ’ ~ ) ~ ~ .  Forcing with spinning mode 
numbers m = +2,  -2, and measurements at x / D  = 2.0. (a) Mean velocity contours in jet cross- 
section; contour interval 0.2U, starting at O.3Uj. (For an explanation of the spectra on the left see 
I, the text description of figures 1 and 2.) (6) Contours of ( u ” ) ~ ~  in jet cross-section; maximum 
r.m.8. level O.O34U,. (c) Contours of (u’*(t)),, in a cut along the jet diameter; two forcing periods 
are shown. (d) Figure 14(c) from Gutmark et al. (1987). 

In  the remaining part of this section we will try to associate the envelope of small- 
scale turbulence with the spatial structure of the large scales. The feature of the 
coherent large-scale motion that will be emphasized is phase-averaged vorticity. 
Vorticity is the field quantity that is most closely linked to what is seen in dye and 
streakline flow visualizations. It is possible to reconstruct ( w + ) ,  the polar component 
of phase-averaged vorticity, from single-wire data because of the symmetry and 
spatial filtering inherent in phase-averaged measurements. Based on continuity and 
assuming a two-dimensional flow, ( w + )  can be determined from the following 
equation : 

a 1 r a 2  

r J o  ax2 
( w + )  = -z(u)-- r’-(u)dr‘. 

The continuity assumption, a(w)/a$ = 0, ought t o  be valid where there are lateral 
symmetries in the forced, standing wave pattern. This occurs a t  sides and corners in 
the case of the square cross-section or along major and minor axes in the case of the 
elliptic cross-section. 

The measurement locations were equally spaced at eighth-wavelength intervals in 
the streamwise direction. The radial profiles were interpolated to produce data 
equally spaced a t  0.020 intervals in radius. First and second derivatives were 
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FIGURE 8. Jet sections showing vortex roll-up (contours) and associated (u’~) ,  (darkened regions) 
at a particular phase of the forcing. Streamwise locations equally spaced at eighth-diameter 
intervals beginning with x l D  = 0.25. Vorticity contour level <w ) - 2.4U,/D ; small-scale 
turbulence threshold (d2)i = O.O4OU,; mean velocity contour level (sbtcd contour) U = 0.5U,. 
Spinning mode number combination: (a) m = + 1, - 1; ( b )  m = +2,  -2. 

calculated numerically using 5-point smoothing. Because of the boundary- layer 
nature of phase-averaged shear flows the second term in (3.1), which has the greatest 
potential for error, was generally less than a tenth the size of the first term. The 
algorithm was tested using ‘data ’ generated analytically from a stream function. 
Random numbers were superimposed to simulate statistical uncertainty. The 
analytic vorticity was reconstructed with reasonable accuracy. 

Figure 8 is a visualization of the three-dimensional structure of the jet at a specific 
phase in the forcing. The m = f 1 and m = &2 forcing are shown and the flows are 
viewed from downstream. The streamwise stations were equally spaced at eighth- 
diameter intervals beginning at  x / D  = 0.25. At each streamwise station radial 
distributions of (w,)  were calculated according to (3.1) and interpolated to fill in the 
polar angles. The contour level shown in the figure was selected to emphasize the 
initial roll-up. Figure 8 (a)  is oriented such that the major axis of the elliptical cross- 
section is vertical. Figure 8 ( b )  is oriented such that the sides of the square cross- 
section are horizontal and vertical. The outline of the half-velocity contours is 
indicated in each case for reference. Some qualitative observations about the 
coherent structure of the flow can be made based on the figure. The large-scale 
vorticity of the elliptical jet, forced with spinning mode numbers of m = f 1, was 
roughly antisymmetric about the minor axis. By contrast there was a general lateral 
symmetry to the structure of the square jet, forced with mode numbers of m = + 2 .  
In the case of the square jet the large-scale vorticity was stronger along the sides, as 
opposed to the corners, of the square. This last observation is consistent with the 
conclusions of Gutmark et al. (1987) concerning the breakdown of large-scale motion 
at corners. 

Regions of strong mixing modulated by the coherent motion of the flow are 
indicated in figure 8 as solid domains. The envelope of small-scale turbulence ( u’2)ss 
was contoured, filled and superimposed onto the vorticity contours. These regions 
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FIGURE 9. Diagonal cut through the corners of the square cross-section at a particular phase of the 
forcing. Jet was forced with spinning mode numbers m = +2,  -2. (a) Contours of <d2( t ) )= ;  
contour interval : 1000 cm2/s2. ( b )  Contours of (u( t ) )  ; contour interval : 300 cm/s. (c) Contours of 
(o+(t)) ; contour interval : 250/s. 

are coincident with the region of vortex roll-up. The manner in which they are 
associated can be understood more precisely by examining the flow structure in 
planes cut along the jet centreline. 

Diagonal and lateral cuts through the corners and sides of the square jet are shown 
in figures 9 and 10. The phase is identical to that of figure 8 ( b ) .  The spatial 
distribution of the turbulence envelope (u'~), ,  is compared to the simultaneous 
distributions of phase-averaged velocity ( u )  and vorticity (w4>. The breakdown of 
large-scale coherent motion at  the corners of the square is apparent when figures 9 ( c )  
and 1O(c) are compared. Three concentrations of vorticity can be seen in figure 1O(c) 
spaced over two wavelengths. In figure 9 ( c )  the large-scale vortical structures seem 
to have disappeared immediately after roll-up. These impressions were confirmed by 
examining the evolution of the flow at various phases. 

The cellular structure evident in figures 9 ( a )  and 10 (a) at the second contour level 
and at  half-diameter intervals in the streamwise direction is an artifact. However, 
the prominent peaks in the upstream portion of the flow are significant. This was 
confirmed by tracking their motion at  varying phase. The upstream peaks in the 
envelope of small-scale turbulence occurred in the regions of roll-up. The peaks 
occurred at  the inner edge of the mixing layer and generally at  streamwise locations 
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FIGURE 10. Lateral cut through the sides of the square cross-section at a particular phase of 
the forcing. Conditions identical to figure 9. 

where the vorticity exhibited double peaks across the mixing layer in the radial 
direction. This last finding is significant because multiple maxima in radial profiles 
of vorticity correspond to multiple inflexion points in radial profiles of velocity. The 
extra inflexion points create secondary shear layers imbedded inside the primary 
shear layer which are locally unstable. Local instabilities can lead to local mixing, 
thus providing a mechanism whereby control of the large scales can indirectly control 
mixing. 

The hypothesis of secondary, inflexional instabilities can be explored further by 
correlating the phase evolution of transverse profiles of velocity and turbulence. This 
type of correlation is shown in figure 11. The streamwise station closest to the dotted 
line of figure 9 was selected. Phases were selected equally spaced over one period of 
forcing. At each phase the profile of r.m.s. u&, magnified by a factor of 10, is 
superimposed on the corresponding profile of phase-averaged velocity. The phase 
t /T  = 0.4 is the same phase as figures 8 ( b )  and 9. Time-averaged, small-scale 
turbulence provides a phase-independent pedestal. Any variation with phase about 
that pedestal is caused by the forcing. From figure 11 the peak level of uLS occurred 
at  or immediately before the onset of a multi-inflexional velocity profile. Peak values 
occurred at  the inner edge of the mixing layer. This picture is consistent with 
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FIQURE 11. Phase evolution of cross-stream distributions of (u(y,t)) and lO(u”((y, t))t along a 
diagonal through the corners of the square cross-section at x / D  = 1.125. . . . . , Mean velocity profile. 

inflexional instabilities that are initiated some point upstream and then develop as 
they are convected past the point of measurement. This same trend was verified at  
several other streamwise locations. 

4. Conclusions 
Incoherent turbulent motion contributes to second-order coherent quantities such 

as phase-averaged variance, equation (2.2). Components of (d2)  that vary with 
polar angle q5 and with the phase of the forcing contribute to wave-induced stress and 
to energy transfer from the coherent, large-scale motion to the broadband turbulence. 
Mechanisms by which incoherent, broadband turbulence is modulated by the forcing 
include phase and amplitude jitter of the forced, large-scale motion and production 
of small-scale turbulence through secondary instabilities induced by the coherent, 
large scales. The stress tensor can be obtained from the phase-averaged covariance 
tensor by averaging over time. Wave-induced stress consists of the coherent wave 
stress 2 plus the component of the incoherent turbulence modulated by the 
forcing. 

The spatial distribution of wave-induced stress was measured in a jet whose cross- 
section had been distorted through controlled resonant interactions between two 
forced, spinning waves. In this experiment the forced response of the jet was 
strongest in the streamwise direction within the first wavelength. Beyond that point, 
although the ratio of wave-induced stress to total stress remained about constant, 
there was a continuous shift in energy from coherent motion to incoherent motion 
organized by the forcing. We speculate that jitter was the likely mechanism for this 
shift. 
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Close to the nozzle, where the coherent stresses were very strong, shape 
assumptions based on eigenfunctions calculated from spatial stability theory 
accurately modelled the measured stress distributions. One would anticipate that a 
deterministic model might predict accurately the exchange of momentum from the 
forced motion to the mean flow in this region. Farther downstream, as the coherent 
motion lost energy, the agreement with the stability eigenfunctions also deteriorated. 
Nevertheless deterministic models based on shape assumptions still may give useful 
qualitative information. 

The question of control over molecular mixing was addressed by extracting small- 
scale turbulence organized by the large-scale, coherent motion. The coherent 
envelope of small-scale turbulence was demodulated by prefiltering the data prior to 
measuring the phase-averaged variance. Cuts through a jet cross-section and along 
a diameter (figure 7) demonstrated that the turbulence was modulated both in space 
and in phase. 

Coherent vorticity (OJ was estimated by applying continuity and symmetry 
assumptions to the coherent, streamwise component of velocity. This was done in 
order to associate the modulation of turbulence with features of the large-scale, 
coherent motion. When the jet was forced in such a way as to produce a square cross- 
section the coherent structures at the corners of the square (figure 9), visualized in 
terms of coherent vorticity, were destroyed. This observation is in agreement with 
flow visualization of an excited jet issuing from a square nozzle (Gutmark et al. 1987). 

Small-scale turbulence modulated by the coherent motion was associated with the 
roll-up process (figures 9 and 10). The turbulence was concentrated at the inner edge 
of the mixing layer and at streamwise locations where there were multiple inflexion 
points in the velocity profile. We speculate that the turbulence was produced 
through secondary, inflexional instabilities. This may explain how molecular mixing 
might be controlled through the direct control over the large-scale motion of free 
shear flows. 

The authors would like to thank Dr E. Gutmark for supplying us with the original 
used in figure 7. This research was supported by the National Science Foundation 
under grant MSM 8800086. 
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